Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Plug-and-Play: Improve Depth Estimation via Sparse Data Propagation (1812.08350v2)

Published 20 Dec 2018 in eess.IV and cs.CV

Abstract: We propose a novel plug-and-play (PnP) module for improving depth prediction with taking arbitrary patterns of sparse depths as input. Given any pre-trained depth prediction model, our PnP module updates the intermediate feature map such that the model outputs new depths consistent with the given sparse depths. Our method requires no additional training and can be applied to practical applications such as leveraging both RGB and sparse LiDAR points to robustly estimate dense depth map. Our approach achieves consistent improvements on various state-of-the-art methods on indoor (i.e., NYU-v2) and outdoor (i.e., KITTI) datasets. Various types of LiDARs are also synthesized in our experiments to verify the general applicability of our PnP module in practice. For project page, see https://zswang666.github.io/PnP-Depth-Project-Page/

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com