Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Depth Completion with Semantic Mesh Deformation Optimization (2112.05498v1)

Published 10 Dec 2021 in cs.CV

Abstract: Sparse depth measurements are widely available in many applications such as augmented reality, visual inertial odometry and robots equipped with low cost depth sensors. Although such sparse depth samples work well for certain applications like motion tracking, a complete depth map is usually preferred for broader applications, such as 3D object recognition, 3D reconstruction and autonomous driving. Despite the recent advancements in depth prediction from single RGB images with deeper neural networks, the existing approaches do not yield reliable results for practical use. In this work, we propose a neural network with post-optimization, which takes an RGB image and sparse depth samples as input and predicts the complete depth map. We make three major contributions to advance the state-of-the-art: an improved backbone network architecture named EDNet, a semantic edge-weighted loss function and a semantic mesh deformation optimization method. Our evaluation results outperform the existing work consistently on both indoor and outdoor datasets, and it significantly reduces the mean average error by up to 19.5% under the same settings of 200 sparse samples on NYU-Depth-V2 dataset.

Summary

We haven't generated a summary for this paper yet.