Papers
Topics
Authors
Recent
2000 character limit reached

Max-Diversity Distributed Learning: Theory and Algorithms (1812.07738v2)

Published 19 Dec 2018 in cs.LG and stat.ML

Abstract: We study the risk performance of distributed learning for the regularization empirical risk minimization with fast convergence rate, substantially improving the error analysis of the existing divide-and-conquer based distributed learning. An interesting theoretical finding is that the larger the diversity of each local estimate is, the tighter the risk bound is. This theoretical analysis motivates us to devise an effective maxdiversity distributed learning algorithm (MDD). Experimental results show that MDD can outperform the existing divide-andconquer methods but with a bit more time. Theoretical analysis and empirical results demonstrate that our proposed MDD is sound and effective.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.