Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Distributed Differential Privacy ERM: Convex and Non-convex (1910.10308v2)

Published 23 Oct 2019 in cs.LG and stat.ML

Abstract: Distributed machine learning is an approach allowing different parties to learn a model over all data sets without disclosing their own data. In this paper, we propose a weighted distributed differential privacy (WD-DP) empirical risk minimization (ERM) method to train a model in distributed setting, considering different weights of different clients. We guarantee differential privacy by gradient perturbation, adding Gaussian noise, and advance the state-of-the-art on gradient perturbation method in distributed setting. By detailed theoretical analysis, we show that in distributed setting, the noise bound and the excess empirical risk bound can be improved by considering different weights held by multiple parties. Moreover, considering that the constraint of convex loss function in ERM is not easy to achieve in some situations, we generalize our method to non-convex loss functions which satisfy Polyak-Lojasiewicz condition. Experiments on real data sets show that our method is more reliable and we improve the performance of distributed differential privacy ERM, especially in the case that data scale on different clients is uneven.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yilin Kang (6 papers)
  2. Yong Liu (721 papers)
  3. Weiping Wang (123 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.