Papers
Topics
Authors
Recent
Search
2000 character limit reached

H-type foliations

Published 6 Dec 2018 in math.DG | (1812.02563v2)

Abstract: With a view toward sub-Riemannian geometry, we introduce and study H-type foliations. These structures are natural generalizations of K-contact geometries which encompass as special cases K-contact manifolds, twistor spaces, 3K contact manifolds and H-type groups. Under an horizontal Ricci curvature lower bound, we prove on those structures sub-Riemannian diameter upper bounds and first eigenvalue estimates for the sub-Laplacian. Then, using a result by Moroianu-Semmelmann, we classify the H-type foliations that carry a parallel horizontal Clifford structure. Finally, we prove an horizontal Einstein property and compute the horizontal Ricci curvature of those spaces in codimension more than 2.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.