Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations, Part I
Abstract: We give a generalized curvature-dimension inequality connecting the geometry of sub-Riemannian manifolds with the properties of its sub-Laplacian. This inequality is valid on a large class of sub-Riemannian manifolds obtained from Riemannian foliations. We give a geometric interpretation of the invariants involved in the inequality. Using this inequality, we obtain a lower bound for the eigenvalues of the sub-Laplacian. This inequality also lays the foundation for proving several powerful results in Part~II.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.