2000 character limit reached
Concept-Oriented Deep Learning: Generative Concept Representations (1811.06622v1)
Published 15 Nov 2018 in cs.LG, cs.AI, and stat.ML
Abstract: Generative concept representations have three major advantages over discriminative ones: they can represent uncertainty, they support integration of learning and reasoning, and they are good for unsupervised and semi-supervised learning. We discuss probabilistic and generative deep learning, which generative concept representations are based on, and the use of variational autoencoders and generative adversarial networks for learning generative concept representations, particularly for concepts whose data are sequences, structured data or graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.