Papers
Topics
Authors
Recent
2000 character limit reached

Mathematical Analysis of Adversarial Attacks (1811.06492v2)

Published 15 Nov 2018 in cs.LG, cs.CR, and stat.ML

Abstract: In this paper, we analyze efficacy of the fast gradient sign method (FGSM) and the Carlini-Wagner's L2 (CW-L2) attack. We prove that, within a certain regime, the untargeted FGSM can fool any convolutional neural nets (CNNs) with ReLU activation; the targeted FGSM can mislead any CNNs with ReLU activation to classify any given image into any prescribed class. For a special two-layer neural network: a linear layer followed by the softmax output activation, we show that the CW-L2 attack increases the ratio of the classification probability between the target and ground truth classes. Moreover, we provide numerical results to verify all our theoretical results.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.