Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unreasonable Effectiveness of Last Hidden Layer Activations for Adversarial Robustness (2202.07342v2)

Published 15 Feb 2022 in cs.LG and cs.AI

Abstract: In standard Deep Neural Network (DNN) based classifiers, the general convention is to omit the activation function in the last (output) layer and directly apply the softmax function on the logits to get the probability scores of each class. In this type of architectures, the loss value of the classifier against any output class is directly proportional to the difference between the final probability score and the label value of the associated class. Standard White-box adversarial evasion attacks, whether targeted or untargeted, mainly try to exploit the gradient of the model loss function to craft adversarial samples and fool the model. In this study, we show both mathematically and experimentally that using some widely known activation functions in the output layer of the model with high temperature values has the effect of zeroing out the gradients for both targeted and untargeted attack cases, preventing attackers from exploiting the model's loss function to craft adversarial samples. We've experimentally verified the efficacy of our approach on MNIST (Digit), CIFAR10 datasets. Detailed experiments confirmed that our approach substantially improves robustness against gradient-based targeted and untargeted attack threats. And, we showed that the increased non-linearity at the output layer has some additional benefits against some other attack methods like Deepfool attack.

Citations (3)

Summary

We haven't generated a summary for this paper yet.