TBA equations and resurgent Quantum Mechanics (1811.04812v3)
Abstract: We derive a system of TBA equations governing the exact WKB periods in one-dimensional Quantum Mechanics with arbitrary polynomial potentials. These equations provide a generalization of the ODE/IM correspondence, and they can be regarded as the solution of a Riemann-Hilbert problem in resurgent Quantum Mechanics formulated by Voros. Our derivation builds upon the solution of similar Riemann-Hilbert problems in the study of BPS spectra in $\mathcal{N}=2$ gauge theories and of minimal surfaces in AdS. We also show that our TBA equations, combined with exact quantization conditions, provide a powerful method to solve spectral problems in Quantum Mechanics. We illustrate our general analysis with a detailed study of PT-symmetric cubic oscillators and quartic oscillators.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.