Papers
Topics
Authors
Recent
Search
2000 character limit reached

Wall-crossing of TBA equations and WKB periods for the third order ODE

Published 22 Nov 2021 in hep-th, math-ph, and math.MP | (2111.11047v2)

Abstract: We study the WKB periods for the third order ordinary differential equation (ODE) with polynomial potential, which is obtained by the Nekrasov-Shatashvili limit of ($A_2,A_N$) Argyres-Douglas theory in the Omega background. In the minimal chamber of the moduli space, we derive the Y-system and the thermodynamic Bethe ansatz (TBA) equations by using the ODE/IM correspondence. The exact WKB periods are identified with the Y-functions. Varying the moduli parameters of the potential, the wall-crossing of the TBA equations occurs. We study the process of the wall-crossing from the minimal chamber to the maximal chamber for $(A_2,A_2)$ and $(A_2,A_3)$. When the potential is a monomial type, we show the TBA equations obtained from the ($A_2, A_2$) and ($A_2, A_3$)-type ODE lead to the $D_4$ and $E_6$-type TBA equations respectively.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.