Quadratic residues and quartic residues modulo primes (1810.12102v8)
Abstract: In this paper we study some products related to quadratic residues and quartic residues modulo primes. Let $p$ be an odd prime and let $A$ be any integer. We mainly determine completely the product $$f_p(A):=\prod_{1\le i,j\le(p-1)/2\atop p\nmid i2-Aij-j2}(i2-Aij-j2)$$ modulo $p$; for example, if $p\equiv1\pmod4$ then $$f_p(A)\equiv\begin{cases}-(A2+4){(p-1)/4}\pmod p&\text{if}\ (\frac{A2+4}p)=1, \(-A2-4){(p-1)/4}\pmod p&\text{if}\ (\frac{A2+4}p)=-1,\end{cases}$$ where $(\frac{\cdot}p)$ denotes the Legendre symbol. We also determine $$\prod{(p-1)/2}_{i,j=1\atop p\nmid 2i2+5ij+2j2}\left(2i2+5ij+2j2\right) \ \text{and}\ \prod{(p-1)/2}_{i,j=1\atop p\nmid 2i2-5ij+2j2}\left(2i2-5ij+2j2\right)$$ modulo $p$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.