Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Averaging theorems for slow fast systems in $\mathbb{Z}$-extensions (discrete time) (2401.11277v1)

Published 20 Jan 2024 in math.DS

Abstract: We study the averaging method for flows perturbed by a dynamical system preserving an infinite measure. Motivated by the case of perturbation by the collision dynamic on the finite horizon $\mathbb Z$-periodic Lorentz gas and in view of future development, we establish our results in a general context of perturbation by $\mathbb Z$-extension over chaotic probability preserving dynamical systems. As a by product, we prove limit theorems for non-stationary Birkhoff sums for such infinite measure preserving dynamical systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube