Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nonlinear integro-differential operator regression with neural networks (1810.08552v1)

Published 19 Oct 2018 in cs.LG, physics.comp-ph, physics.data-an, and stat.ML

Abstract: This note introduces a regression technique for finding a class of nonlinear integro-differential operators from data. The method parametrizes the spatial operator with neural networks and Fourier transforms such that it can fit a class of nonlinear operators without needing a library of a priori selected operators. We verify that this method can recover the spatial operators in the fractional heat equation and the Kuramoto-Sivashinsky equation from numerical solutions of the equations.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.