Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CURE-OR: Challenging Unreal and Real Environments for Object Recognition (1810.08293v2)

Published 18 Oct 2018 in cs.CV

Abstract: In this paper, we introduce a large-scale, controlled, and multi-platform object recognition dataset denoted as Challenging Unreal and Real Environments for Object Recognition (CURE-OR). In this dataset, there are 1,000,000 images of 100 objects with varying size, color, and texture that are positioned in five different orientations and captured using five devices including a webcam, a DSLR, and three smartphone cameras in real-world (real) and studio (unreal) environments. The controlled challenging conditions include underexposure, overexposure, blur, contrast, dirty lens, image noise, resizing, and loss of color information. We utilize CURE-OR dataset to test recognition APIs-Amazon Rekognition and Microsoft Azure Computer Vision- and show that their performance significantly degrades under challenging conditions. Moreover, we investigate the relationship between object recognition and image quality and show that objective quality algorithms can estimate recognition performance under certain photometric challenging conditions. The dataset is publicly available at https://ghassanalregib.com/cure-or/.

Citations (41)

Summary

We haven't generated a summary for this paper yet.