Branching laws for the Steinberg representation: the rank 1 case (1810.06910v1)
Abstract: Let $G/H$ be a reductive symmetric space over a $p$-adic field $F$, the algebraic groups $G$ and $H$ being assumed semisimple of relative rank $1$. One of the branching problems for the Steinberg representation $\St_G$ of $G$ is the determination of the dimension of the intertwining space ${\rm Hom}H (\St_G ,\pi )$, for any irreducible representation $\pi$ of $H$. In this work we do not compute this dimension, but show how it is related to the dimensions of some other intertwining spaces ${\rm Hom}{K_i} ({\tilde \pi} ,1)$, for a certain finite family $K_i$, $i=1,...,r$, of anisotropic subgroups of $H$ (here ${\tilde \pi}$ denote the contragredient representation, and $1$ the trivial character). In other words we show that there is a sort of `reciprocity law' relating two different branching problems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.