Papers
Topics
Authors
Recent
Search
2000 character limit reached

Classification of full exceptional collections of line bundles on three blow-ups of $\mathbb{P}^{3}$

Published 15 Oct 2018 in math.AG | (1810.06367v1)

Abstract: A fullness conjecture of Kuznetsov says that if a smooth projective variety $X$ admits a full exceptional collection of line bundles of length $l$, then any exceptional collection of line bundles of length $l$ is full. In this paper, we show that this conjecture holds for $X$ as the blow-up of $\mathbb{P}{3}$ at a point, a line, or a twisted cubic curve, i.e. any exceptional collection of line bundles of length 6 on $X$ is full. Moreover, we obtain an explicit classification of full exceptional collections of line bundles on such $X$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.