A Unified Dynamic Approach to Sparse Model Selection
Abstract: Sparse model selection is ubiquitous from linear regression to graphical models where regularization paths, as a family of estimators upon the regularization parameter varying, are computed when the regularization parameter is unknown or decided data-adaptively. Traditional computational methods rely on solving a set of optimization problems where the regularization parameters are fixed on a grid that might be inefficient. In this paper, we introduce a simple iterative regularization path, which follows the dynamics of a sparse Mirror Descent algorithm or a generalization of Linearized Bregman Iterations with nonlinear loss. Its performance is competitive to \texttt{glmnet} with a further bias reduction. A path consistency theory is presented that under the Restricted Strong Convexity (RSC) and the Irrepresentable Condition (IRR), the path will first evolve in a subspace with no false positives and reach an estimator that is sign-consistent or of minimax optimal $\ell_2$ error rate. Early stopping regularization is required to prevent overfitting. Application examples are given in sparse logistic regression and Ising models for NIPS coauthorship.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.