Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Dimensional Linear Regression via Implicit Regularization (1903.09367v2)

Published 22 Mar 2019 in math.ST, stat.CO, stat.ML, and stat.TH

Abstract: Many statistical estimators for high-dimensional linear regression are M-estimators, formed through minimizing a data-dependent square loss function plus a regularizer. This work considers a new class of estimators implicitly defined through a discretized gradient dynamic system under overparameterization. We show that under suitable restricted isometry conditions, overparameterization leads to implicit regularization: if we directly apply gradient descent to the residual sum of squares with sufficiently small initial values, then under some proper early stopping rule, the iterates converge to a nearly sparse rate-optimal solution that improves over explicitly regularized approaches. In particular, the resulting estimator does not suffer from extra bias due to explicit penalties, and can achieve the parametric root-n rate when the signal-to-noise ratio is sufficiently high. We also perform simulations to compare our methods with high dimensional linear regression with explicit regularization. Our results illustrate the advantages of using implicit regularization via gradient descent after overparameterization in sparse vector estimation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Peng Zhao (162 papers)
  2. Yun Yang (122 papers)
  3. Qiao-Chu He (5 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.