Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dense Multimodal Fusion for Hierarchically Joint Representation (1810.03414v1)

Published 8 Oct 2018 in cs.CV and cs.MM

Abstract: Multiple modalities can provide more valuable information than single one by describing the same contents in various ways. Hence, it is highly expected to learn effective joint representation by fusing the features of different modalities. However, previous methods mainly focus on fusing the shallow features or high-level representations generated by unimodal deep networks, which only capture part of the hierarchical correlations across modalities. In this paper, we propose to densely integrate the representations by greedily stacking multiple shared layers between different modality-specific networks, which is named as Dense Multimodal Fusion (DMF). The joint representations in different shared layers can capture the correlations in different levels, and the connection between shared layers also provides an efficient way to learn the dependence among hierarchical correlations. These two properties jointly contribute to the multiple learning paths in DMF, which results in faster convergence, lower training loss, and better performance. We evaluate our model on three typical multimodal learning tasks, including audiovisual speech recognition, cross-modal retrieval, and multimodal classification. The noticeable performance in the experiments demonstrates that our model can learn more effective joint representation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Di Hu (88 papers)
  2. Feiping Nie (65 papers)
  3. Xuelong Li (268 papers)
Citations (41)