Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Why do Larger Models Generalize Better? A Theoretical Perspective via the XOR Problem (1810.03037v2)

Published 6 Oct 2018 in cs.LG and stat.ML

Abstract: Empirical evidence suggests that neural networks with ReLU activations generalize better with over-parameterization. However, there is currently no theoretical analysis that explains this observation. In this work, we provide theoretical and empirical evidence that, in certain cases, overparameterized convolutional networks generalize better than small networks because of an interplay between weight clustering and feature exploration at initialization. We demonstrate this theoretically for a 3-layer convolutional neural network with max-pooling, in a novel setting which extends the XOR problem. We show that this interplay implies that with overparamterization, gradient descent converges to global minima with better generalization performance compared to global minima of small networks. Empirically, we demonstrate these phenomena for a 3-layer convolutional neural network in the MNIST task.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.