Papers
Topics
Authors
Recent
2000 character limit reached

Permutation Invariant Gaussian Matrix Models

Published 20 Sep 2018 in hep-th, cs.CL, math-ph, math.MP, and math.RT | (1809.07559v2)

Abstract: Permutation invariant Gaussian matrix models were recently developed for applications in computational linguistics. A 5-parameter family of models was solved. In this paper, we use a representation theoretic approach to solve the general 13-parameter Gaussian model, which can be viewed as a zero-dimensional quantum field theory. We express the two linear and eleven quadratic terms in the action in terms of representation theoretic parameters. These parameters are coefficients of simple quadratic expressions in terms of appropriate linear combinations of the matrix variables transforming in specific irreducible representations of the symmetric group $S_D$ where $D$ is the size of the matrices. They allow the identification of constraints which ensure a convergent Gaussian measure and well-defined expectation values for polynomial functions of the random matrix at all orders. A graph-theoretic interpretation is known to allow the enumeration of permutation invariants of matrices at linear, quadratic and higher orders. We express the expectation values of all the quadratic graph-basis invariants and a selection of cubic and quartic invariants in terms of the representation theoretic parameters of the model.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.