Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dushnik-Miller dimension of d-dimensional tilings with boxes (1809.05287v1)

Published 14 Sep 2018 in cs.DM and math.CO

Abstract: Planar graphs are the graphs with Dushnik-Miller dimension at most three (W. Schnyder, Planar graphs and poset dimension, Order 5, 323-343, 1989). Consider the intersection graph of interior disjoint axis parallel rectangles in the plane. It is known that if at most three rectangles intersect on a point, then this intersection graph is planar, that is it has Dushnik-Miller dimension at most three. This paper aims at generalizing this from the plane to $Rd$ by considering tilings of $Rd$ with axis parallel boxes, where at most $d+1$ boxes intersect on a point. Such tilings induce simplicial complexes and we will show that those simplicial complexes have Dushnik-Miller dimension at most $d+1$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.