Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimension of posets with planar cover graphs excluding two long incomparable chains (1608.08843v2)

Published 31 Aug 2016 in math.CO and cs.DM

Abstract: It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have two large disjoint chains with all points in one chain incomparable with all points in the other. Gutowski and Krawczyk conjectured that this feature is necessary. More formally, they conjectured that for every $k\geq 1$, there is a constant $d$ such that if $P$ is a poset with a planar cover graph and $P$ excludes $\mathbf{k}+\mathbf{k}$, then $\dim(P)\leq d$. We settle their conjecture in the affirmative. We also discuss possibilities of generalizing the result by relaxing the condition that the cover graph is planar.

Citations (10)

Summary

We haven't generated a summary for this paper yet.