Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modified Diversity of Class Probability Estimation Co-training for Hyperspectral Image Classification (1809.01436v1)

Published 5 Sep 2018 in cs.CV

Abstract: Due to the limited amount and imbalanced classes of labeled training data, the conventional supervised learning can not ensure the discrimination of the learned feature for hyperspectral image (HSI) classification. In this paper, we propose a modified diversity of class probability estimation (MDCPE) with two deep neural networks to learn spectral-spatial feature for HSI classification. In co-training phase, recurrent neural network (RNN) and convolutional neural network (CNN) are utilized as two learners to extract features from labeled and unlabeled data. Based on the extracted features, MDCPE selects most credible samples to update initial labeled data by combining k-means clustering with the traditional diversity of class probability estimation (DCPE) co-training. In this way, MDCPE can keep new labeled data class-balanced and extract discriminative features for both the minority and majority classes. During testing process, classification results are acquired by co-decision of the two learners. Experimental results demonstrate that the proposed semi-supervised co-training method can make full use of unlabeled information to enhance generality of the learners and achieve favorable accuracies on all three widely used data sets: Salinas, Pavia University and Pavia Center.

Citations (5)

Summary

We haven't generated a summary for this paper yet.