Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Modelling Irregular Spatial Patterns using Graph Convolutional Neural Networks (1808.09802v1)

Published 15 Aug 2018 in stat.ML and cs.LG

Abstract: The understanding of geographical reality is a process of data representation and pattern discovery. Former studies mainly adopted continuous-field models to represent spatial variables and to investigate the underlying spatial continuity/heterogeneity in the regular spatial domain. In this article, we introduce a more generalized model based on graph convolutional neural networks (GCNs) that can capture the complex parameters of spatial patterns underlying graph-structured spatial data, which generally contain both Euclidean spatial information and non-Euclidean feature information. A trainable semi-supervised prediction framework is proposed to model the spatial distribution patterns of intra-urban points of interest(POI) check-ins. This work demonstrates the feasibility of GCNs in complex geographic decision problems and provides a promising tool to analyze irregular spatial data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.