Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Discriminative Representation with Signed Laplacian Restricted Boltzmann Machine (1808.09389v1)

Published 28 Aug 2018 in cs.CV

Abstract: We investigate the potential of a restricted Boltzmann Machine (RBM) for discriminative representation learning. By imposing the class information preservation constraints on the hidden layer of the RBM, we propose a Signed Laplacian Restricted Boltzmann Machine (SLRBM) for supervised discriminative representation learning. The model utilizes the label information and preserves the global data locality of data points simultaneously. Experimental results on the benchmark data set show the effectiveness of our method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.