Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Variate RBM and Its Applications (1601.00722v1)

Published 5 Jan 2016 in cs.CV

Abstract: Restricted Boltzmann Machine (RBM) is an importan- t generative model modeling vectorial data. While applying an RBM in practice to images, the data have to be vec- torized. This results in high-dimensional data and valu- able spatial information has got lost in vectorization. In this paper, a Matrix-Variate Restricted Boltzmann Machine (MVRBM) model is proposed by generalizing the classic RBM to explicitly model matrix data. In the new RBM model, both input and hidden variables are in matrix forms which are connected by bilinear transforms. The MVRBM has much less model parameters, resulting in a faster train- ing algorithm while retaining comparable performance as the classic RBM. The advantages of the MVRBM have been demonstrated on two real-world applications: Image super- resolution and handwritten digit recognition.

Citations (3)

Summary

We haven't generated a summary for this paper yet.