Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distance Based Source Domain Selection for Sentiment Classification

Published 28 Aug 2018 in cs.IR, cs.LG, and stat.ML | (1808.09271v1)

Abstract: Automated sentiment classification (SC) on short text fragments has received increasing attention in recent years. Performing SC on unseen domains with few or no labeled samples can significantly affect the classification performance due to different expression of sentiment in source and target domain. In this study, we aim to mitigate this undesired impact by proposing a methodology based on a predictive measure, which allows us to select an optimal source domain from a set of candidates. The proposed measure is a linear combination of well-known distance functions between probability distributions supported on the source and target domains (e.g. Earth Mover's distance and Kullback-Leibler divergence). The performance of the proposed methodology is validated through an SC case study in which our numerical experiments suggest a significant improvement in the cross domain classification error in comparison with a random selected source domain for both a naive and adaptive learning setting. In the case of more heterogeneous datasets, the predictability feature of the proposed model can be utilized to further select a subset of candidate domains, where the corresponding classifier outperforms the one trained on all available source domains. This observation reinforces a hypothesis that our proposed model may also be deployed as a means to filter out redundant information during a training phase of SC.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.