Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bayesian model-based spatiotemporal survey design for log-Gaussian Cox process (1808.09200v1)

Published 28 Aug 2018 in stat.ME

Abstract: In geostatistics, the design for data collection is central for accurate prediction and parameter inference. One important class of geostatistical models is log-Gaussian Cox process (LGCP) which is used extensively, for example, in ecology. However, there are no formal analyses on optimal designs for LGCP models. In this work, we develop a novel model-based experimental design for LGCP modeling of spatiotemporal point process data. We propose a new spatially balanced rejection sampling design which directs sampling to spatiotemporal locations that are a priori expected to provide most information. We compare the rejection sampling design to traditional balanced and uniform random designs using the average predictive variance loss function and the Kullback-Leibler divergence between prior and posterior for the LGCP intensity function. Our results show that the rejection sampling method outperforms the corresponding balanced and uniform random sampling designs for LGCP whereas the latter work better for models with Gaussian models. We perform a case study applying our new sampling design to plan a survey for species distribution modeling on larval areas of two commercially important fish stocks on Finnish coastal areas. The case study results show that rejection sampling designs give considerable benefit compared to traditional designs. Results show also that best performing designs may vary considerably between target species.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.