Parameter-wise co-clustering for high-dimensional data (1808.08366v2)
Abstract: In recent years, data dimensionality has increasingly become a concern, leading to many parameter and dimension reduction techniques being proposed in the literature. A parameter-wise co-clustering model, for data modelled via continuous random variables, is presented. The proposed model, although allowing more flexibility, still maintains the very high degree of parsimony achieved by traditional co-clustering. A stochastic expectation-maximization (SEM) algorithm along with a Gibbs sampler is used for parameter estimation and an integrated complete log-likelihood criterion is used for model selection. Simulated and real datasets are used for illustration and comparison with traditional co-clustering.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.