An approximation scheme for quasi-stationary distributions of killed diffusions (1808.07086v2)
Abstract: In this paper we study the asymptotic behavior of the normalized weighted empirical occupation measures of a diffusion process on a compact manifold which is killed at a smooth rate and then regenerated at a random location, distributed according to the weighted empirical occupation measure. We show that the weighted occupation measures almost surely comprise an asymptotic pseudo-trajectory for a certain deterministic measure-valued semiflow, after suitably rescaling the time, and that with probability one they converge to the quasi-stationary distribution of the killed diffusion. These results provide theoretical justification for a scalable quasi-stationary Monte Carlo method for sampling from Bayesian posterior distributions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.