Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Heterogeneous Ultra-Dense Networks with Graphical Representations (1808.04547v1)

Published 14 Aug 2018 in cs.IT and math.IT

Abstract: Heterogeneous ultra-dense network (H-UDN) is envisioned as a promising solution to sustain the explosive mobile traffic demand through network densification. By placing access points, processors, and storage units as close as possible to mobile users, H-UDNs bring forth a number of advantages, including high spectral efficiency, high energy efficiency, and low latency. Nonetheless, the high density and diversity of network entities in H-UDNs introduce formidable design challenges in collaborative signal processing and resource management. This article illustrates the great potential of machine learning techniques in solving these challenges. In particular, we show how to utilize graphical representations of H-UDNs to design efficient machine learning algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.