Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On feature selection and evaluation of transportation mode prediction strategies (1808.03096v2)

Published 9 Aug 2018 in cs.AI, cs.LG, and stat.ML

Abstract: Transportation modes prediction is a fundamental task for decision making in smart cities and traffic management systems. Traffic policies designed based on trajectory mining can save money and time for authorities and the public. It may reduce the fuel consumption and commute time and moreover, may provide more pleasant moments for residents and tourists. Since the number of features that may be used to predict a user transportation mode can be substantial, finding a subset of features that maximizes a performance measure is worth investigating. In this work, we explore wrapper and information retrieval methods to find the best subset of trajectory features. After finding the best classifier and the best feature subset, our results were compared with two related papers that applied deep learning methods and the results showed that our framework achieved better performance. Furthermore, two types of cross-validation approaches were investigated, and the performance results show that the random cross-validation method provides optimistic results.

Citations (6)

Summary

We haven't generated a summary for this paper yet.