Papers
Topics
Authors
Recent
2000 character limit reached

A Survey on Surrogate Approaches to Non-negative Matrix Factorization (1808.01975v2)

Published 6 Aug 2018 in cs.LG and stat.ML

Abstract: Motivated by applications in hyperspectral imaging we investigate methods for approximating a high-dimensional non-negative matrix $\mathbf{\mathit{Y}}$ by a product of two lower-dimensional, non-negative matrices $\mathbf{\mathit{K}}$ and $\mathbf{\mathit{X}}.$ This so-called non-negative matrix factorization is based on defining suitable Tikhonov functionals, which combine a discrepancy measure for $\mathbf{\mathit{Y}}\approx\mathbf{\mathit{KX}}$ with penalty terms for enforcing additional properties of $\mathbf{\mathit{K}}$ and $\mathbf{\mathit{X}}$. The minimization is based on alternating minimization with respect to $\mathbf{\mathit{K}}$ or $\mathbf{\mathit{X}}$, where in each iteration step one replaces the original Tikhonov functional by a locally defined surrogate functional. The choice of surrogate functionals is crucial: It should allow a comparatively simple minimization and simultaneously its first order optimality condition should lead to multiplicative update rules, which automatically preserve non-negativity of the iterates. We review the most standard construction principles for surrogate functionals for Frobenius-norm and Kullback-Leibler discrepancy measures. We extend the known surrogate constructions by a general framework, which allows to add a large variety of penalty terms. The paper finishes by deriving the corresponding alternating minimization schemes explicitely and by applying these methods to MALDI imaging data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.