Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Primal-Dual Algorithms for Non-negative Matrix Factorization with the Kullback-Leibler Divergence (1412.1788v1)

Published 4 Dec 2014 in cs.LG and math.OC

Abstract: Non-negative matrix factorization (NMF) approximates a given matrix as a product of two non-negative matrices. Multiplicative algorithms deliver reliable results, but they show slow convergence for high-dimensional data and may be stuck away from local minima. Gradient descent methods have better behavior, but only apply to smooth losses such as the least-squares loss. In this article, we propose a first-order primal-dual algorithm for non-negative decomposition problems (where one factor is fixed) with the KL divergence, based on the Chambolle-Pock algorithm. All required computations may be obtained in closed form and we provide an efficient heuristic way to select step-sizes. By using alternating optimization, our algorithm readily extends to NMF and, on synthetic examples, face recognition or music source separation datasets, it is either faster than existing algorithms, or leads to improved local optima, or both.

Citations (21)

Summary

We haven't generated a summary for this paper yet.