Papers
Topics
Authors
Recent
2000 character limit reached

Combining Graph-based Dependency Features with Convolutional Neural Network for Answer Triggering (1808.01650v1)

Published 5 Aug 2018 in cs.AI and cs.LG

Abstract: Answer triggering is the task of selecting the best-suited answer for a given question from a set of candidate answers if exists. In this paper, we present a hybrid deep learning model for answer triggering, which combines several dependency graph based alignment features, namely graph edit distance, graph-based similarity and dependency graph coverage, with dense vector embeddings from a Convolutional Neural Network (CNN). Our experiments on the WikiQA dataset show that such a combination can more accurately trigger a candidate answer compared to the previous state-of-the-art models. Comparative study on WikiQA dataset shows 5.86% absolute F-score improvement at the question level.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.