Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Mod-DeepESN: Modular Deep Echo State Network (1808.00523v2)

Published 1 Aug 2018 in cs.LG and stat.ML

Abstract: Neuro-inspired recurrent neural network algorithms, such as echo state networks, are computationally lightweight and thereby map well onto untethered devices. The baseline echo state network algorithms are shown to be efficient in solving small-scale spatio-temporal problems. However, they underperform for complex tasks that are characterized by multi-scale structures. In this research, an intrinsic plasticity-infused modular deep echo state network architecture is proposed to solve complex and multiple timescale temporal tasks. It outperforms state-of-the-art for time series prediction tasks.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.