Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Localization in fractonic random circuits (1807.09776v3)

Published 25 Jul 2018 in cond-mat.stat-mech, cond-mat.dis-nn, cond-mat.str-el, and quant-ph

Abstract: We study the spreading of initially-local operators under unitary time evolution in a 1d random quantum circuit model which is constrained to conserve a $U(1)$ charge and its dipole moment, motivated by the quantum dynamics of fracton phases. We discover that charge remains localized at its initial position, providing a crisp example of a non-ergodic dynamical phase of random circuit dynamics. This localization can be understood as a consequence of the return properties of low dimensional random walks, through a mechanism reminiscent of weak localization, but insensitive to dephasing. The charge dynamics is well-described by a system of coupled hydrodynamic equations, which makes several nontrivial predictions in good agreement with numerics. Importantly, these equations also predict localization in 2d fractonic circuits. Immobile fractonic charge emits non-conserved operators, whose spreading is governed by exponents distinct to non-fractonic circuits. Fractonic operators exhibit a short time linear growth of observable entanglement with saturation to an area law, as well as a subthermal volume law for operator entanglement. The entanglement spectrum follows semi-Poisson statistics, similar to eigenstates of MBL systems. The non-ergodic phenomenology persists to initial conditions containing non-zero density of dipolar or fractonic charge. Our work implies that low-dimensional fracton systems preserve forever a memory of their initial conditions in local observables under noisy quantum dynamics, thereby constituting ideal memories. It also implies that 1d and 2d fracton systems should realize true MBL under Hamiltonian dynamics, even in the absence of disorder, with the obstructions to MBL in translation invariant systems and in d>1 being evaded by the nature of the mechanism responsible for localization. We also suggest a possible route to new non-ergodic phases in high dimensions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.