Domain Stylization: A Strong, Simple Baseline for Synthetic to Real Image Domain Adaptation (1807.09384v1)
Abstract: Deep neural networks have largely failed to effectively utilize synthetic data when applied to real images due to the covariate shift problem. In this paper, we show that by applying a straightforward modification to an existing photorealistic style transfer algorithm, we achieve state-of-the-art synthetic-to-real domain adaptation results. We conduct extensive experimental validations on four synthetic-to-real tasks for semantic segmentation and object detection, and show that our approach exceeds the performance of any current state-of-the-art GAN-based image translation approach as measured by segmentation and object detection metrics. Furthermore we offer a distance based analysis of our method which shows a dramatic reduction in Frechet Inception distance between the source and target domains, offering a quantitative metric that demonstrates the effectiveness of our algorithm in bridging the synthetic-to-real gap.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.