Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Modality Distillation: A case for Conditional Generative Adversarial Networks (1807.07682v1)

Published 20 Jul 2018 in eess.IV

Abstract: In this paper, we propose to use a Conditional Generative Adversarial Network (CGAN) for distilling (i.e. transferring) knowledge from sensor data and enhancing low-resolution target detection. In unconstrained surveillance settings, sensor measurements are often noisy, degraded, corrupted, and even missing/absent, thereby presenting a significant problem for multi-modal fusion. We therefore specifically tackle the problem of a missing modality in our attempt to propose an algorithm based on CGANs to generate representative information from the missing modalities when given some other available modalities. Despite modality gaps, we show that one can distill knowledge from one set of modalities to another. Moreover, we demonstrate that it achieves better performance than traditional approaches and recent teacher-student models.

Citations (31)

Summary

We haven't generated a summary for this paper yet.