Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
64 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
227 tokens/sec
2000 character limit reached

Comparative study of Discrete Wavelet Transforms and Wavelet Tensor Train decomposition to feature extraction of FTIR data of medicinal plants (1807.07099v1)

Published 18 Jul 2018 in eess.SP, cs.LG, cs.NA, and stat.ML

Abstract: Fourier-transform infra-red (FTIR) spectra of samples from 7 plant species were used to explore the influence of preprocessing and feature extraction on efficiency of machine learning algorithms. Wavelet Tensor Train (WTT) and Discrete Wavelet Transforms (DWT) were compared as feature extraction techniques for FTIR data of medicinal plants. Various combinations of signal processing steps showed different behavior when applied to classification and clustering tasks. Best results for WTT and DWT found through grid search were similar, significantly improving quality of clustering as well as classification accuracy for tuned logistic regression in comparison to original spectra. Unlike DWT, WTT has only one parameter to be tuned (rank), making it a more versatile and easier to use as a data processing tool in various signal processing applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.