CascadeCNN: Pushing the Performance Limits of Quantisation in Convolutional Neural Networks (1807.05053v1)
Abstract: This work presents CascadeCNN, an automated toolflow that pushes the quantisation limits of any given CNN model, aiming to perform high-throughput inference. A two-stage architecture tailored for any given CNN-FPGA pair is generated, consisting of a low- and high-precision unit in a cascade. A confidence evaluation unit is employed to identify misclassified cases from the excessively low-precision unit and forward them to the high-precision unit for re-processing. Experiments demonstrate that the proposed toolflow can achieve a performance boost up to 55% for VGG-16 and 48% for AlexNet over the baseline design for the same resource budget and accuracy, without the need of retraining the model or accessing the training data.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.