Will it Blend? Composing Value Functions in Reinforcement Learning
Abstract: An important property for lifelong-learning agents is the ability to combine existing skills to solve unseen tasks. In general, however, it is unclear how to compose skills in a principled way. We provide a "recipe" for optimal value function composition in entropy-regularised reinforcement learning (RL) and then extend this to the standard RL setting. Composition is demonstrated in a video game environment, where an agent with an existing library of policies is able to solve new tasks without the need for further learning.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.