Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Filter of Minhash for Image Similarity Measures (1807.02895v1)

Published 8 Jul 2018 in cs.MM and cs.IR

Abstract: Image similarity measures play an important role in nearest neighbor search and duplicate detection for large-scale image datasets. Recently, Minwise Hashing (or Minhash) and its related hashing algorithms have achieved great performances in large-scale image retrieval systems. However, there are a large number of comparisons for image pairs in these applications, which may spend a lot of computation time and affect the performance. In order to quickly obtain the pairwise images that theirs similarities are higher than the specific threshold T (e.g., 0.5), we propose a dynamic threshold filter of Minwise Hashing for image similarity measures. It greatly reduces the calculation time by terminating the unnecessary comparisons in advance. We also find that the filter can be extended to other hashing algorithms, on when the estimator satisfies the binomial distribution, such as b-Bit Minwise Hashing, One Permutation Hashing, etc. In this pager, we use the Bag-of-Visual-Words (BoVW) model based on the Scale Invariant Feature Transform (SIFT) to represent the image features. We have proved that the filter is correct and effective through the experiment on real image datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.