Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accurate Estimators for Improving Minwise Hashing and b-Bit Minwise Hashing (1108.0895v1)

Published 3 Aug 2011 in stat.ML, cs.DB, cs.IR, and cs.LG

Abstract: Minwise hashing is the standard technique in the context of search and databases for efficiently estimating set (e.g., high-dimensional 0/1 vector) similarities. Recently, b-bit minwise hashing was proposed which significantly improves upon the original minwise hashing in practice by storing only the lowest b bits of each hashed value, as opposed to using 64 bits. b-bit hashing is particularly effective in applications which mainly concern sets of high similarities (e.g., the resemblance >0.5). However, there are other important applications in which not just pairs of high similarities matter. For example, many learning algorithms require all pairwise similarities and it is expected that only a small fraction of the pairs are similar. Furthermore, many applications care more about containment (e.g., how much one object is contained by another object) than the resemblance. In this paper, we show that the estimators for minwise hashing and b-bit minwise hashing used in the current practice can be systematically improved and the improvements are most significant for set pairs of low resemblance and high containment.

Citations (5)

Summary

We haven't generated a summary for this paper yet.