Papers
Topics
Authors
Recent
2000 character limit reached

HMCF - Hamiltonian Monte Carlo Sampling for Fields - A Python framework for HMC sampling with NIFTy (1807.02709v2)

Published 7 Jul 2018 in physics.data-an, astro-ph.IM, and physics.comp-ph

Abstract: HMCF "Hamiltonian Monte Carlo for Fields" is a software add-on for the NIFTy "Numerical Information Field Theory" framework implementing Hamiltonian Monte Carlo (HMC) sampling in Python. HMCF as well as NIFTy are designed to address inference problems in high-dimensional spatially correlated setups such as image reconstruction. HMCF adds an HMC sampler to NIFTy that automatically adjusts the many free parameters steering the HMC sampling machinery. A wide variety of features ensure efficient full-posterior sampling for high-dimensional inference problems. These features include integration step size adjustment, evaluation of the mass matrix, convergence diagnostics, higher order symplectic integration and simultaneous sampling of parameters and hyperparameters in Bayesian hierarchical models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.