Papers
Topics
Authors
Recent
2000 character limit reached

Minimum Labelling bi-Connectivity

Published 2 Jul 2018 in cs.DM | (1807.00570v1)

Abstract: A labelled, undirected graph is a graph whose edges have assigned labels, from a specific set. Given a labelled, undirected graph, the well-known minimum labelling spanning tree problem is aimed at finding the spanning tree of the graph with the minimum set of labels. This combinatorial problem, which is NP-hard, can be also formulated as to give the minimum number of labels that provide single connectivity among all the vertices of the graph. Here we consider instead the problem of finding the minimum set of labels that provide bi-connectivity among all the vertices of the graph. A graph is bi-connected if there are at least two disjoint paths joining every pair of vertices. We consider both bi-connectivity concept: the edge bi-connectivity where these paths cannot have a common edge and the vertex bi-connectivity where the paths cannot have a common vertex. We describe our preliminary investigation on the problem and provide the details on the solution approaches for the problem under current development.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.