Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mejora de la exploracion y la explotacion de las heuristicas constructivas para el MLSTP (1405.1980v1)

Published 16 Apr 2014 in cs.DM and math.CO

Abstract: This paper studies constructive heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree that uses edges that are as similar as possible. Given an undirected labeled connected graph (i.e., with a label or color for each edge), the minimum labeling spanning tree problem seeks a spanning tree whose edges have the smallest possible number of distinct labels. The model can represent many real-world problems in telecommunication networks, electric networks, and multimodal transportation networks, among others, and the problem has been shown to be NP-complete even for complete graphs. A primary heuristic, named the maximum vertex covering algorithm has been proposed. Several versions of this constructive heuristic have been proposed to improve its efficiency. Here we describe the problem, review the literature and compare some variants of this algorithm.

Summary

We haven't generated a summary for this paper yet.