Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Evaluating language models of tonal harmony (1806.08724v1)

Published 22 Jun 2018 in cs.SD and eess.AS

Abstract: This study borrows and extends probabilistic LLMs from natural language processing to discover the syntactic properties of tonal harmony. LLMs come in many shapes and sizes, but their central purpose is always the same: to predict the next event in a sequence of letters, words, notes, or chords. However, few studies employing such models have evaluated the most state-of-the-art architectures using a large-scale corpus of Western tonal music, instead preferring to use relatively small datasets containing chord annotations from contemporary genres like jazz, pop, and rock. Using symbolic representations of prominent instrumental genres from the common-practice period, this study applies a flexible, data-driven encoding scheme to (1) evaluate Finite Context (or n-gram) models and Recurrent Neural Networks (RNNs) in a chord prediction task; (2) compare predictive accuracy from the best-performing models for chord onsets from each of the selected datasets; and (3) explain differences between the two model architectures in a regression analysis. We find that Finite Context models using the Prediction by Partial Match (PPM) algorithm outperform RNNs, particularly for the piano datasets, with the regression model suggesting that RNNs struggle with particularly rare chord types.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.